Example of ASCE 7-16 Risk Category II Hawaii effective wind speed map. Wind load design cases as defined in Figure 27-4-8 of ASCE 7-16 Case 1: Full wind loads in two perpendicular directions considered separately. View More View Less. The component and cladding pressure coefficients, ( GCp ), for roofs on buildings with an h < 60 feet, have been revised significantly in ASCE 7-16. - Main Wind Force Resisting Wystem (MWFRS) - Components & Cladding (C&C) The software has the capability to calculate loads per: - ASCE 7-22 - ASCE 7-16 - ASCE 7-10 (version dependent) - ASCE 7-05 (version dependent) - Florida Building . This calculator is for estimating purposes only & NOT for permit or construction. Senior Code Compliance Engineer PGT Custom Windows + Doors f ASCE 7-16 Simplified Language for Effective Wind Area (Chapter 26 Commentary): Current language in ASCE 7-10: For typical door and window systems supported on three or more sides, the effective wind area is the area of the door or window under See ASCE 7-16 for important details not included here. Join the discussion with civil engineers across the world. Alternative Designs for Steel Ordinary Moment Frames, An Interactive Approach to Designing Calmer Streets for Residential Subdivisions, An Introduction to ASCE 7-16 Wind Loads - Three Part Series-PART 1, An Introduction to ASCE 7-16 Wind Loads - Three Part Series-PART 2, An Introduction to ASCE 7-16 Wind Loads - Three Part Series-PART 3, An Introduction to HEC-RAS Culvert Hydraulics, An Introduction to Value Engineering (VE) for Value Based Design Decision-Making, Analysis and Design of Veneer Cover Soils for Landfills and Related Waste Containment Systems, Application of Computational Fluid Dynamics to Improve Mixing and Disinfection for Ozone Contactors, Applying Access Management to Roadway Projects, Approaches to Mitigation of Karst Sinkholes, Architectural Concrete: Design and Construction Strategies to Maintain Appearance & Limit Water Intrusion, ASCE 59-11 Blast Protection of Buildings - Blast-Resistant Design of Systems, and Components, ASCE/SEI 41-17: Performance Objectives & Seismic Hazard Changes, ASCE/SEI 41-17: A Summary of Major Changes, ASCE/SEI 41-17: Analysis Procedure Changes, Assessment and Evaluation Methods and Tools of Structural Forensic Investigations, Avoid Costly Mistakes Using HEC-RAS - Understanding HEC-RAS Computations, Avoiding Ethical Pitfalls in Failure Investigations, Avoiding Problems in Masonry Construction, Avoiding Problems in Specifying Metal Roofing, Basics of Drainage Design for Parking Lot including LID Techniques, Beaver Dam Analogue Design: Using the Tool, Beneficial Uses and Reuses of Dredged Material, Benefits of Pavement Reclamation: How In-Place Recycling has Worked for National Parks/Forests, Best Practices and Lessons Learned from the Design and Construction of Rigid Pavements, Best Practices for Crack Treatments for Asphalt Pavements, Best Practices of Incorporating Reclaimed Asphalt Pavement and Rejuvenation Alternatives, Bridge Deep Foundation Design for Liquefaction and Lateral Spreading - Lessons Learned, Building Enclosure Commissioning (BECx): What You Need to Know, Building Renovation On-Demand Webinar Package. (Note: MecaWind makes this adjustment automatically, you just enter the Width and Length and it will check the 1/3 rule). Design Example Problem 1a 3. Program incorporates all roof types and combinations defined in ASCE 7-05 or ASCE 7-10/16, Chapters 27-28. . ASCE 7-16 is referenced in the 2018 International Building Code (IBC) for wind loads. This condition is expressed for each wall by the equation A o 0.8A g 26.2 . 26.8 TOPOGRAPHIC EFFECTS 26.8.1 Wind Speed-Up over Hills, Ridges, and Escarpments Wind speed-up effects at isolated hills, ridges, ASCE 7 has multiple methods for calculating wind loads on a Parapet. 050-parapets-where-roofs-meet-walls Components and Cladding (C & C) Parapet Wind Load, ASCE 7-16 Figure 30.8-1 . Per ASCE 7-02 Code for Low-Rise, Enclosed Buildings with h <= 60' and Roof q <= 45. Advanced Topics in the Seismic Design of Non-Building Structures & Non-Structural Components to ASCE 7-10 (AWI080213) Score: 70% Dec 2015 . The current investigation extends the previous work in calculating components and cladding loads for standing seam metal roof clips. Click below to see what we've got in our regularly updated calculation library. S0.05 level B2 - ASCE 7 15.7.6 - Calcs B-8 - Please clarify how the tank walls have been designed for . Components receive load from cladding. Consequently, wind speeds generally decrease across the country, except along the hurricane coastline from Texas to North Carolina. ASCE 7 ONLINE - Individual and Corporate Subscriptions Available A faster, easier way to work with the Standard ASCE 7 Online provides digital access to both ASCE/SEI 7-16 and 7-10 but with enhanced features, including: side-by-side display of the Provisions and Commentary; redlining. Terms and Conditions of Use
The most significant reduction in wind speeds occurs in the Western states, which decreased approximately 15% from ASCE 7-10 (Figures 1 and 2). Prior versions of ASCE 7 have not specifically addressed loads on rooftop solar panels. Quality: What is it and How do we Achieve it? Access the. Horizontal Seismic Design Force (Fp) is defined by the equation 13.3-1 in both ASCE 7-16 and 7-22, however, the formula in 7-22 is significantly different from that in 7-16. Terms and Conditions of Use
To determine the area we need the Width and Length: Width = The effective width of the component which need not be less than 1/3 of the span length. Wind Load Calculators per ASCE 7-16 & ASCE 7-22 . The comparison is for 10 different cities in the US with the modifiers for Exposure B taken at 15 feet above grade, location elevation factor, smallest applicable EWA, and reduced wind speeds from new maps applied from ASCE 7-16 as appropriate. Design Wind Pressures for Components and Cladding (C&C) . Design Project 15 Out-of-Plane Loading: Wind Loading Parapet Design Force (ASCE 7-16) . There is interest at the ASCE 7 Wind Load Task Committee in studying ways to make these changes simpler and reduce possible confusion in the application of C&C provisions for the ASCE 7-22 cycle. They also covered the wind chapter changes between ASCE 7-16 and 7-22 including the tornado provisions. Figure 4. ), Design of Lateral Load Resisting Systems in Masonry Buildings, Design of Onsite Wastewater Disposal Systems, Design of Restrained Joints for Pressure Pipes, Design of Roof Structures - Avoiding Common Errors, Design of Sanitary Sewer Collection Systems, Design of Slab on Grade for Light Buildings on Shrink Swell Soils, Designing and Implementing Separated Bikeways, Designing Channels for Stream Restoration: Alluvial Channel Design, Designing Channels for Stream Restoration: Threshold Channel Design, Designing for Flood Loads Using ASCE 7 and ASCE 24, Designing Modern Roundabouts - How to Handle Drainage and Grading, Designing Structures for Tsunami Resilience using the New Chapter 6 of ASCE 7-16, Designing Water Balance Covers (ET Covers) for Landfills and Waste Containment, Designing with AWC's National Design Specification (NDS) for Wood Construction 2018 - Overview and Changes from Previous Editions, Determining Appropriate Level of Engineering and Use of 'Soft Engineering' for Stream Restoration Activities, Developing, Implementing, & Managing a Comprehensive Citywide Traffic Signal Coordination Program, Developing Pavement Performance Models for Asset Management Applications, Diagnosis, Repair, and Restoration of Building Facades, Digitization in the Field of Civil Engineering, Disaster Resilience of Infrastructure Systems: Quantification and Economic Valuation for Decision and Policy Making, Discussion on the new ASCE Manual of Practice on Surveying and Geomatics Engineering, Dynamically Loaded Machine and Equipment Foundations - A Design Primer, Earth Retaining Structures Technical Committee Presentation on Earth Retaining Structures, Effective Pavement Management and Its Benefits, Elimination of Deck Expansion Joints on Existing Bridges, Embankments, Dams and Slopes Technical Committee Presentation on Impacts of Extreme Events on Geotechnical Infrastructure, Embankments, Dams and Slopes Technical Committee Presentation on Impacts of Recent Extreme Events, Energy Piles - Background and Geotechnical Engineering Concepts, Engineer Your Own Success: 7 Key Elements to Creating an Extraordinary Engineering Career, Engineering Investigations of Hurricane Damage: Wind versus Water, Engineering Judgment - Structural Renovation of a 100-Year-old Historic Barn, Engineering Judgment: Low-Rise Building Design and Detailing, Engineering Mid-Rise Buildings of Wood Construction, Engineering Practice for Wetting-Induced Collapse of Soils, Engineering the Future: 2020 Code of Ethics, Engineering Treatments and Design Development Strategies for Creating Safe Routes to Schools, Enterprise Asset Management for Infrastructures, Environmental Issues and Mitigation for Low Volume Roads, Erosion Control and Revegetation Metrails; Design, Installation and Performance, Estimating Erosion Rates - Tools for Prioritizing TMDL-Water Quality Improvements, Stream Restoration, and Infrastructure Protection Projects, Estimating Flood Flows Using Regression Methods, Ethical Behavior - The Key to Earning Trust, Ethics in Sustainable Development for Civil and Structural Engineers, Evaluating Damage and Repairing Metal Plate Connected Wood Trusses, Evaluation and Quantifying Inefficiency in Construction: A Case Study Approach, Failure of Molecules, Bones, and the Earth Itself: Nanotechnology and Bioinspired Materials in Civil Engineering, From Engineering to Entrepreneurship: How to Prepare For, Start and Manage Your Own Engineering firm, From Project Engineer to Project Manager Look Before You Leap, Frost-protected Shallow Foundations - Design and Construction, Geophysical Imaging in Support of Geotechnical, Hydrologic and/or Environmental Site Characterization, Geophysical Imaging in Support of Structural and/or Pavement Investigations, Geo-Structural Investigation of Existing Structures, Geosynthetic Applications Accompanying Shale Gas Drilling Operations, Geosynthetic Basal Reinforcement Over Deep Foundations Including Geosynthetic Encased Stone-Sand Columns, Geosynthetic Clay Liners in Waste Containment Applications - Hydraulic and Chemical Compatibility Performance of GCLs in Landfill Liner Systems, Geosynthetic Clay Liners in Waste Containment Applications - Static Shear Strength of GCLs and GCL Interfaces, Geosynthetic Clay Liners in Waste Containment Applications: Hydraulic and Chemical Compatibility, Geosynthetic Reinforced Mechanically Stabilized Earth Walls, Geosynthetic Reinforced Soil Integrated Bridge System, Geosynthetics Used in Unpaved and Paved Roads, Geotextile Tubes for Erosion Control, Dewatering and Decontamination, Glued Laminated and Cross Laminated Timbers: Mass Timber for a New Generation of Wood Construction, Gray Areas of Responsibility in Masonry Design, Guidelines for Inspecting Earth Dams and Associated Outlet Works and Spillways, Highway and Street Safety On-Demand Webinar Package, How Construction Tolerances Affect Structural Design, How to Meet The Federal Traffic Sign Retroflectivity Requirements, How to Plan Projects Effectively - Two Part Series, How to Prepare and Implement a Successful Strategic Plan, Hydraulic Performance of Detention Pond Outlet Structures, Hydraulics 101 - Understanding the Basics, Hydrologic Trespass and Nuisance Considerations in Stormwater Management Design, Hydrology and Hydraulics On-Demand Webinar Package, Implementation of GIS in the Airport Environments, Improving Highway Safety: An Overview of 9 Proven Crash Countermeasures, Innovation in Civil Engineering: Examples and How to Do It, Innovative and Smart Construction: Use of Infrared Thermal Profiling and GPR Pavement Density Scanner, In-Situ Stabilization of Soil Slopes Using Nailed (or Anchored) Geosynthetics, Inspection and Rehabilitation Methodologies for Large Diameter Water Transmission Pipelines, Installation, Design and Performance of Prefabricated Drains, aka PVDs, Installation, Verification and Application of Driven Piles, Integrity Assessment of Deep Foundations: Principles and Limitations, International Building Code Essentials for Wood Construction - Fire Protection Basics for Structural Engineers, International Project Development and Construction Risk, Introduction to 2015 International Existing Building Code, Introduction to Design of Erosion Control Measures Using Riprap, Introduction to Jet Grouting and Its Applications, Introduction to Navigation Channel Design, Introduction to Runoff Analysis Using Unit Hydrographs, Introduction to Solid Waste Transfer Design for Rural Communities, Introduction to the Design of Wood Lateral-Force Resisting Systems in Accordance with 2015 International Building Code, Introduction to the Seismic Design of Nonbuilding Structures to ASCE 7-10, Introduction to the Seismic Design of Nonbuilding Structures to ASCE 7-16, Introduction to Unsaturated Soil Mechanics, Investigation and Repair of Fire-Damaged Framing, Investigation of Winter Roof Failures - Lessons Learned, Landfills and Waste Containment On-Demand Webinar Package, Large Wood Diaphragms in Heavy-Wall Buildings: New Understandings of their Seismic Behavior and Improving Their Performance, Learning from Failures of Wood-Framed Structures, Lessons From Failures of Building Envelope, Lessons Learned from the Design, Construction and Maintenance of Permeable Pavements for Stormwater Management, Life Cycle Assessment for Transportation Facilities, Long-Term Durability (aka, Lifetime) of Geosynthetics, Low-Volume Road Surface Drainage and Drainage Crossing Structures, Managed Lanes: From Planning through Design to Operations, Management and Leadership Skills for Civil Engineers On-Demand Webinar Package, Marketing 101 - Sleazy Activity or Mutually Beneficial, Mass Timber Structural Floor and Roof Design, Mentoring: Guidance for Mentors, Proteges and Organizations, Mitigating Effects of Corrosion and Deterioration in Construction, Mitigating Uncertainty - A Perspective for Engineers, Mitigation of Carbon Emissions from Construction Projects, Modeling Low Impact Development (LID) and Green Infrastructure (GI) using the EPA Stormwater Management Model (SWMM): Continuous Simulation, Modeling Low Impact Development (LID) and Green Infrastructure (GI) using the EPA Stormwater Management Model (SWMM): Event-based Modeling, Modeling Low Impact Development (LID) and Green Infrastructure (GI) using the EPA Stormwater Management Model (SWMM): SWMM Basics, Moment-Resisting Connections in Steel Structures, Navigation Engineering - Challenges of Sustainability and Resilience, Navigation Engineering - Understanding the Basics, Negotiating Better Engineering and Architectural Contracts, New and Emerging Technology for the Construction of Pavements, New ASCE Standard - Design, Construction and Maintenance of Permeable Interlocking Concrete Pavements, Observation Method For Scour - A New Tool for the Bridge Engineer, Pathogens in Urban Stormwater Systems - A Practical Guide for MS4s, Pathogens in Urban Stormwater Systems - Source Controls and Stormwater Control Measures, Pathogens in Urban Stormwater Systems On-Demand Webinar Package, Permeable Pavement - Design Considerations and Tips for Avoiding Failures, Petrographic Analysis of Concrete Deterioration, Pier and Beam Foundation Design for Wind and Flood Loads, Pipeline Condition Assessment Using Broadband Electromagnetic (BEM) Testing, Planning and Design for Stream Rehabilitation with Large Wood, Post-Tensioning Concepts and Practice - Beyond the Basics, Practical Application of Fiber Reinforced Polymer (FRP) in Strengthening Existing Concrete and Masonry Structures, Practical Concrete Repair and Rehabilitation Techniques for Major Concrete Structures Using ACI 546R-14, Practical Design of Bolted and Welded Steel Connections, Practical Design of Multistory Shear Walls, Practical Insights for Diaphragm Modeling in the Analysis of Building Structures, Practical Life-Cycle Analysis for Bridges, Practical Seismic Evaluation of Existing Buildings Using ASCE 41-13 Tier 1 Screening Procedure with a Case Study, Practical Use of Drones for Diverse Infrastructure Projects, Preparing and Implementing Construction Site Storm Water Pollution Prevention Plans, Prevent Accidents and Traffic Delays - The Art of Delivering and Maintaining Successful Signal Timing Improvements, Professional Skills Series in Leadership and Management: Career Development, Professional Skills Series in Leadership and Management: Change & Innovation, Professional Skills Series in Leadership and Management: Communication, Professional Skills Series in Leadership and Management: Leadership, Professional Skills Series in Leadership and Management: Project Management, Project Planning: How to Think Through Before You DO, Project Planning On-Demand Webinar Package, Project Team and People Management - Part I of II, Project Team and People Management - Part II of II, Public Speaking - How to Plan, Design, and Deliver a Presentation, Quality Management during Design and Construction. Additionally, effective wind speed maps are provided for the State of Hawaii. There is no audio, it is just a 2.5 minute video showing how you enter Part 1 and then switch to Part 4 for the results. Designers are encouraged to carefully study the impacts these changes have on their own designs or in their standard design practices. Example of ASCE 7-10 Risk Category II Basic Wind Speed Map. Contact publisher for all permission requests. Thus, a Topographic Factor value, Kzt equal to 1.0 is to be used. Airfield Pavement Condition Assessment - Manual or Automated? Chapter 30 Part 4 was the other method we could use. Example of ASCE 7-16 Figure 29.4-7 Excerpt for rooftop solar panel design wind loads.Printed with permission from ASCE. Considering all of these effects, a new zoning procedure for low-sloped roofs for buildings with h 60 feet was developed. and he has coauthored Significant Changes to the Minimum Design Load Provisions of ASCE 7-16 and authored Significant Changes to the Wind Load Provisions of ASCE 7-10: An Illustrated Guide. The 2018 IBC and the referenced Standard are being adopted by a few jurisdictions and will become more widely used in 2019. ASCE 7 -16 Chapter 13 discusses requirements for support of non-structural components such as cable trays.<o:p></o:p><o:p> </o:p> ASCE 7-16, Chapter 13, Item 3.3.1.1 gives some equations for horizontal forces for seismic design for components that include an importance factor. Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Network and interact with the leading minds in your profession. This will give us the most conservative C&C wind pressure for each zone. Figure 1. ASCE-7-16 & 7-10 Wall Components & Cladding Wall Wind Pressure Calculator Use this tool to calculate wall zones 4 & 5 positive & negative ASD design wind pressures for your project. Provides a composite drawing of the structure as the user adds sections. Meca has developed the MecaWind software, which can make all of these calculations much easier. The seismic load effect s including overstrength factor in accordance with Sections 2.3.6 and 2.4.5 of ASCE 7 where required by Chapters 12, 13, and 15 of ASCE 7. ASCE 7-16 describes the means for determining design loads including dead, live, soil, flood, tsunami, snow, rain, atmospheric ice, earthquake, wind, and fire, as well as how to assess load combinations. Using all of this criteria, we can then determine that the only two methods of Chapter 30 where we meet all criteria are Part 1 and 4 (see chart). Case 3: 75% wind loads in two perpendicular directions simultaneously. Engineering Materials. Determining Wind Loads from the ASCE 7-16. STRUCTURE USING Designer RCDC g per NSCP 2015/ASCE 7-10 C 360-10 by LRFD Method to STAAD ncrete Designer RCDC. The tests showed that the corner zones were too small for the high roof pressures that were being measured at these locations on the building. Since our Roof Angle (4.76 Deg) <= 10 Deg, then we can take h as the eave height (EHt). To do this we first need our mean roof height (h) and roof angle. Figure 6. ASCE7 10 Components Cladding Wind Load Provisions. The ASCE 7-16 classification types are Open buildings, Partially Open, Partially Enclosed, and Enclosed buildings. In first mode, wall and parapet loads are in . Free Chapter 26 Section 2 Us History Answer PDF ePub Mobi. Each FORTIFIED solution includes enhancements . STRUCTURE magazine is a registered trademark of the National Council of Structural Engineers Associations (NCSEA). S0.01 - Please provide the wind pressure study and the components and cladding study in the permit submittal. This limitation was removed in ASCE 7-16, and thus the provisions apply to rooftop equipment on buildings of all heights. It is necessary to look at the impact of the provisions as a whole, instead of individually, to understand how design procedures are affected.. Don and Cherylyn explained the significant changes to the wind maps and provisions in ASCE 7-16 including the differences between ASCE 7-10 and 7-16 low-rise components and cladding roof pressures. Hip roofs have several additional configurations that were not available in previous editions of ASCE 7. 2017 Florida Building Code . Example of ASCE 7-16 Risk Category II Basic Wind Speed Map. Give back to the civil engineering community: volunteer, mentor, donate and more. This is considered a Simplified method and is supposed to be easier to calculate by looking up values from tables. . Because the building is open and has a pitched roof, there . In Equation 16-16, . Sketch for loads on the pipe rack for Example 1. Using "Partially Enclosed" as the building type results in an increase of about one third in the design wind pressures in the field of the roof versus an "Enclosed" or "Partially Open" buildingall other factors held equal. This article provides a Components and Cladding (C&C) example calculation for a typical building structure. Contact publisher for all permission requests. We have worked this same example in MecaWind, and here is the video to show the process. Step 1: The Risk Category is determined from Table 1.5-1 [1] based on the use or occupancy of the building. Printed with permission from ASCE. Loading standard: The wind pressure value is calculated according to: ASCE/SEI 7-16 Chapter 30 Wind Loads - Components and Cladding (C&C), Part 1: Low-Rise Buildings. Research became available for the wind pressures on low-slope canopies during this last code cycle of the Standard. These pressures follow the normal ASCE 7 convention, Positive pressures are acting TOWARD the surface, and Negative Pressures are acting AWAY from the surface. Major revisions to ASCE 7-16 that affect the wind design of buildings have been highlighted. Example of ASCE 7-16 low slope roof component and cladding zoning. This factor provides a simple and convenient way to adjust the velocity pressure in the wind pressure calculations for the reduced mass density of air at the building site. and components and cladding of building and nonbuilding structures. Apply wind provisions for components and cladding, solar collectors, and roof mounted equipment. Sign in to download full-size image Figure 2.8. For Wind Direction Parallel To 28m Side Thus, we need to calculate the L/B and h/L: Roof mean height, h = 6.5 mBuilding length, L = 28 mBuilding width, B = 24 mL/B = 0.857h/B = 0.271 Wall Pressure Coefficients, \, and External Pressure, \ When you ask for FORTIFIED, you're asking for a collection of construction upgrades that work together to protect your home from severe weather. See ASCE 7-16 for important details not included here. For the wall we follow Figure 30.3-1: For 10 sq ft, we get the following values for GCp. Implementation, River Restoration with Large Wood - Detailed Design and Construction, Roadway Construction Inspection Techniques to Minimize Life-Cycle Costs, Roadway Construction Quality Control and Inspection Techniques for Asphalt Surfaced Pavements, Roadway Construction Quality Control and Inspection Techniques for Concrete Surfaced Pavements, Roller-Compacted Concrete Pavements - Applications and Guidance, School Zones - A Comprehensive Look at Signs, Markings ,and Safety Programs, Scope Creep: Focus on Prevention and Improve Project Performance, Sediment Characteristics, Sources, and Movement, Seismic Assessment and Design of Water and Sewer Pipelines, Seismic Assessment and Strengthening of Buildings and Structures in Areas of Low to Moderate Seismicity, Seismic Design of Steel Horizontal, Saddle-Support Tanks, Seismic Evaluation and Retrofit of Existing Buildings: An Overview of Changes to the New ASCE 41-13, Seismic Evaluation of Existing Buildings Using ASCE 41-13 Tier 2 and Tier 3 Procedures, Seismic Screening of Buildings Using ASCE 41-13, Selected Topics Regarding Geosynthetic Clay Liners, Setting and Achieving Personal and Organization Goals, Ship/Tow Simulation of Navigation Design Studies: Interpreting U.S. Army Corps of Engineers Requirements, Significant Changes to Tensile Membrane Structures, ASCE 55-16, Significant Changes to the General Requirements for Determining Windloads of ASCE 7-10, Significant Changes to the Wind Load Design Procedures of ASCE 7-10, Significant Changes to the Wind Load Provisions of ASCE 7-10 and Coordination with the 2015 IBC and 2015 IRC, Significant Changes to the Wind Load Provisions of ASCE 7-16, S-N Curves for Metal Fatigue, Best Practices, Origins, and Limitations, Snow and Rain Loads in ASCE 7-16: What's New and Different, Snow Loading for Non-Standard Roof Shapes, Soil Improvement Technical Committee Presentation on Soil Improvement, Soil Liquefaction Risk Mitigation Using Earthquake Drains and Other Drainage Techniques, Solving Problems and Pursuing Opportunities, Speaking - How to Prepare and Deliver a Convincing Presentation, Steel Structures On-Demand Webinar Package, Stormwater Infiltration Basin Design - Design Considerations and Example Projects, Stormwater Management On-Demand Webinar Package, Stream Restoration - In-Channel Structure Design and Placement, Stream Restoration - Proper Channel Sizing and the Significance for Future Channel Stability, Stream Restoration and Bioengineered Bank Stabilization - Fundamental Concepts, Stream Restoration Bioengineered Retaining Walls for Riverbank Stabilization, Stream Restoration On-Demand Webinar Package, Stream Restoration: What Works and What Doesn't Work, Structural Building Condition Surveys: Looking for Trouble, Structural Considerations for Building Additions, Structural Design of Steel Stairs and Rails, Structural Supports for Rooftop-Mounted Equipment, Structural Testing of Curtain Wall Systems, Structural Thermal Bridging in the Building Envelope, Supporting Suspended Loads from Building Structural Elements, Sustainable Geotechnical Applications: Coal Combustion Products Part II of VI, Sustainable Geotechnical Applications: Construction Using Recycled Materials Part I of VI, Sustainable Geotechnical Applications: Foundry Byproducts Part IV of VI, Sustainable Geotechnical Applications On-Demand Webinar Package, Sustainable Geotechnical Applications: Recycled Base Aggregates in Pavement Applications Part III of VI, Sustainable Geotechnical Applications: Sustainability & Life Cycle Analysis of Recycled Materials - Part VI of VI, Sustainable Geotechnical Applications: Tire Derived Aggregate in Geotechnical and Environmental Applications- Part V of VI, Sustainable Infrastructure Using Envision to Plan, Design and Rate Infrastructure Projects, Sustainable Sediment Management for Navigation Projects, Target Zero Injuries - Developing a Comprehensive Safety Program for Engineers and Constructors, The First Three Rules of Construction - Document, Document, Document, The Five Habits of Highly Effective Marketers, The Five Most Common Errors Made During Bridge Inspections, The Impact of Design, Construction and Maintenance Features on the Long-Term Performance of Pavements, The Importance of Floodplain Design in Stream Restoration, River Stablization and Flood Damage Mitigation Projects, The Integration of Computational Fluid Dynamics (CFD) Modeling Tools in Water Treatment Plant Design, The Measurement of Soil Suction in the Field for Geotechnical Engineering Applications, The Pricing of Delay Costs for Construction Projects, The Road Safety and Signage Audit - Proactive Roadway Safety in the 21st Century, The Role of the Specialty Engineer (From the Wood Truss Industry's Perspective), The Seismic Coefficient Method for Slope and Retaining Wall Design, Thin Pavement Surface Treatments to Improve Friction and Reduction Moisture Infiltration, Tornado Design Using ASCE 7-16 Commentary, Traffic Studies for Implementing Short-Term and Long-Range Roadway Improvements, Traffic Volume Data Collection: A Practical Guide, Transforming Urban Water Management - A New Strategy Explored, Transit Signal Preemption and Priority Treatments, Transportation Infrastructure Considerations for Super Heavy Load Moves, Troubleshooting Unsteady Flow HEC-RAS Models, Underground Construction Engineering Technical Committee Presentation on Recent Advancements in Underground Engineering and Construction, Underpinning and Strengthening of Foundations, Understanding HEC-RAS Errors, Warnings and Notes, Upcoming Revisions ASTME 1527 Standard Practice for Environmental Sites Assessment, Use of Geosynthetics for Waterproofing Critical Hydraulic Structures, Using HEC-RAS 5.0 for a Coupled 1D/2D Analysis, Using HEC-RAS 5.0 for Two Dimensional Hydraulic Analyses, Using HEC-RAS 5.0.7 for Two Dimensional Hydraulic Analyses, Using Nonlinear Analysis and Fiber Wrap Material for Efficient Seismic Retrofit, Using Technology to Mitigate Wet Weather Overflows and Reduce Infiltration and Inflow (I/I), Utilizing Drones to Improve Bridge Inspection Results, Verification of Computer Calculations by Approximate Methods, Vibration of Concrete Floors - Evaluation, Acceptance and Control, Visualizing Information for First Responders, Waste and By-Product Use in Road Construction, Water Balance Modeling for Alternative Covers, Whole Building Lifecycle Assessment: Quantifying Impacts of Construction Materials, Wind Design for Components and Cladding Using ASCE 7-16, Wind Design for Non-Residential Wood Structures, Wind Loading: MWFRS and C&C Approach for Non-Rectangular Low-Rise Buildings, Wood Structures On-Demand Webinar Package, Working Smarter - Using Brain Basics to Enhance Individual and Organizational Performance, Writing: How to Engage and Convince Your Readers.